Answer:
Chloroform is expected to boil at 333 K (60
).
Explanation:
For liquid-vapor equilibrium at 1 atm,
= 0.
We know,
, where T is temperature in kelvin scale.
Here both
and
are corresponding to vaporization process therefore T represents boiling point of chloroform.
So, ![0=(31.4\times 10^{3}\frac{J}{mol})-[T\times (94.2\frac{J}{mol.K})]](https://tex.z-dn.net/?f=0%3D%2831.4%5Ctimes%2010%5E%7B3%7D%5Cfrac%7BJ%7D%7Bmol%7D%29-%5BT%5Ctimes%20%2894.2%5Cfrac%7BJ%7D%7Bmol.K%7D%29%5D)
or, T = 333 K
So, at 333 K (60
) , chloroform is expected to boil.
Answer:
STOP IMAGINING
Explanation:
It says IMAGINE you are in a room
Light<span> transfers energy, and if this energy is absorbed it </span>will<span> heat the </span>food<span>. So yes visible lights do.</span>
You can do this by dividing by the molar mass of Zn:
Answer:
The total pressure in the container is 2 atm (Option B)
Explanation:
Step 1: Data given
The initial pressure of the PCl5(g) is 1.00 atm
Volume of the container = 1.00 L
Step 2: The balanced equation
PCl5(g) ⇋ PCl3(g) + Cl2(g)
Step 3: Calculate the total pressure in the container
1mol of ideal gas has a pressure of 1 atm
If 1 mol of PCl5 completely decomposes into 1 mol PCl3 and 1 mol Cl2
Then the pressure for 1 mol PCl3 and 1 mol Cl2 is for both 1 atm
The total pressure would be 2*1 atm = 2 atm
The total pressure in the container is 2 atm