For a function to be continuous at an x-value of -3 you need to make sure two things line up:
First, we need to show that the limit from the left equals the limit from the right.
![\lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{+}} f(x)](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20-3%5E%7B-%7D%7D%20f%28x%29%20%3D%20%20%5Clim_%7Bx%20%5Cto%20-3%5E%7B%2B%7D%7D%20f%28x%29)
Second, we need to show that this limit equals the functions value.
![\lim_{x \to -3} f(x) = f(-3)](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%20-3%7D%20f%28x%29%20%3D%20f%28-3%29)
The left hand limit involves the first piece, f(x) = x^2 - 9:
![\begin{aligned} \lim_{x \to -3^{-}} f(x) &= \lim_{x \to -3^{-}} (x^2-9)\\[0.5em]&= (-3)^2-9\\[0.5em]&= 0\endaligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Clim_%7Bx%20%5Cto%20-3%5E%7B-%7D%7D%20f%28x%29%20%26%3D%20%20%5Clim_%7Bx%20%5Cto%20-3%5E%7B-%7D%7D%20%28x%5E2-9%29%5C%5C%5B0.5em%5D%26%3D%20%20%20%28-3%29%5E2-9%5C%5C%5B0.5em%5D%26%3D%20%20%200%5Cendaligned%7D)
The right hand limit invovles the second piece, f(x) = 0:
![\begin{aligned} \lim_{x \to -3^{+}} f(x) &= \lim_{x \to -3^{+}} (0)\\[0.5em]&= 0\endaligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Clim_%7Bx%20%5Cto%20-3%5E%7B%2B%7D%7D%20f%28x%29%20%26%3D%20%20%5Clim_%7Bx%20%5Cto%20-3%5E%7B%2B%7D%7D%20%280%29%5C%5C%5B0.5em%5D%26%3D%20%20%200%5Cendaligned%7D)
Since the two one-sided limits do match, we can just say:
(no one-sided pieces needed now)
So that was step #1, to make sure the limit exists. Next we need to make sure the limit is headed to the same place where the functions. Since we're using x=-3, we'll use the top piece of the function because x=-3 fits with that piece ( x ≤ -3 ).
![f(-3) = (-3)^2-9 = 0](https://tex.z-dn.net/?f=f%28-3%29%20%3D%20%28-3%29%5E2-9%20%3D%200)
From this, we know that
, so the function is continuous at -3. (We also know parabolas and lines are continuous in general, so we only needed to check where the two pieces came together at x = -3.)