Answer:
How to factor out a polynomial with a 3rd degree-• well here is a For example, let G(x) = 7x³ – 125. Then factoring this third degree polynomial relieve on a differences of cubes as follows: (2x – 5) (4x² + 20x + 25), where ²x is the cube-root of 8x³ and 5 is the cube-root of 1256
They did not include the constraint for y ≤x+3 on the graph.
See attached picture with added constraint.
Using the 4 points that are given as the solution on the graph, replace t he x and Y in the original equation to solve and see which is the greater value.
Point (0,3) P = -0 +3(3) = 0+9 = 9
Point (1,4) P = -1 + 3(4) = -1 +12 = 11
Point (0,0) P = -0 + 3(0) = 0 + 0 = 0
Point (3,0) P = -3 + 3(0) = -3 + 0 = -3
The correct solution to maximize P is (1,4)
They had the same quotient because both of those equations are equal
You can 14 rows of 5 chairs, which also means you can do 5 rows of 14. Or 7 rows of 10 or 10 rows of seven. That's all I'm getting that doesn't exceed the 20 row limit.