The distance between those to points is d=6.708204 or d=6
Answer:68.3 degrees
Step-by-step explanation:
The diagram of the triangle ABC is shown in the attached photo. We would determine the length of side AB. It is equal to a. We would apply the cosine rule which is expressed as follows
c^2 = a^2 + b^2 - 2abCos C
Looking at the triangle,
b = 75 miles
a = 80 miles.
Angle ACB = 180 - 42 = 138 degrees. Therefore
c^2 = 80^2 + 75^2 - 2 × 80 × 75Cos 138
c^2 = 6400 + 5625 - 12000Cos 138
c^2 = 6400 + 5625 - 12000 × -0.7431
c^2 = 12025 + 8917.2
c = √20942.2 = 144.7
To determine A, we will apply sine rule
a/SinA = b/SinB = c/SinC. Therefore,
80/SinA = 144.7/Sin 138
80Sin 138 = 144.7 SinA
SinA = 53.528/144.7 = 0.3699
A = 21.7 degrees
Therefore, theta = 90 - 21.7
= 68.3 degees
Answer:
(1, 6 )
Step-by-step explanation:
5x + 2y = 17 → (1)
4x + y = 10 → (2)
Multiplying (2) by - 2 and adding to (1) will eliminate the y- term
- 8x - 2y = - 20 → (3)
Add (1) and (3) term by term to eliminate y
- 3x + 0 = - 3
- 3x = - 3 ( divide both sides by - 3 )
x = 1
Substitute x = 1 into either of the 2 equations and solve for x
Substituting into (1)
5(1) + 2y = 17
5 + 2y = 17 ( subtract 5 from both sides )
2y = 12 ( divide both sides by 2 )
y = 6
solution is (1, 6 )