1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
3 years ago
8

What is the correct answer?

Mathematics
1 answer:
Andreas93 [3]3 years ago
8 0

Answer:

19

Step-by-step explanation:

12 2  

_wj

jsd(htthhth2tht

ththhhthth22thtth2h

You might be interested in
I don’t get what it means by “Identify the graphs of proportional relationships.”
Ymorist [56]
C and B is proportional relationships , because the proportional relationships always start at zero and the line must be straight !
5 0
3 years ago
Find the measure of angle 4
Morgarella [4.7K]

Answer:

38

Step-by-step explanation:

Notice that the first triangle is an isosceles triangle, meaning that the base angles are equivalent. Since one angle is 62, we know that the other is 62 as well, which makes 124. This means that angle 2 is 56 degrees. Since 2 and 3 are on the same 'line', they both add up to 180. If 2 is 56, then angle 3 is 124. So the three angles inside the triangle are 124, 18, and x. So, 124+18=142. 180-142= 38

6 0
2 years ago
Let X1,X2......X7 denote a random sample from a population having mean μ and variance σ. Consider the following estimators of μ:
Viefleur [7K]

Answer:

a) In order to check if an estimator is unbiased we need to check this condition:

E(\theta) = \mu

And we can find the expected value of each estimator like this:

E(\theta_1 ) = \frac{1}{7} E(X_1 +X_2 +... +X_7) = \frac{1}{7} [E(X_1) +E(X_2) +....+E(X_7)]= \frac{1}{7} 7\mu= \mu

So then we conclude that \theta_1 is unbiased.

For the second estimator we have this:

E(\theta_2) = \frac{1}{2} [2E(X_1) -E(X_3) +E(X_5)]=\frac{1}{2} [2\mu -\mu +\mu] = \frac{1}{2} [2\mu]= \mu

And then we conclude that \theta_2 is unbiaed too.

b) For this case first we need to find the variance of each estimator:

Var(\theta_1) = \frac{1}{49} (Var(X_1) +...+Var(X_7))= \frac{1}{49} (7\sigma^2) = \frac{\sigma^2}{7}

And for the second estimator we have this:

Var(\theta_2) = \frac{1}{4} (4\sigma^2 -\sigma^2 +\sigma^2)= \frac{1}{4} (4\sigma^2)= \sigma^2

And the relative efficiency is given by:

RE= \frac{Var(\theta_1)}{Var(\theta_2)}=\frac{\frac{\sigma^2}{7}}{\sigma^2}= \frac{1}{7}

Step-by-step explanation:

For this case we assume that we have a random sample given by: X_1, X_2,....,X_7 and each X_i \sim N (\mu, \sigma)

Part a

In order to check if an estimator is unbiased we need to check this condition:

E(\theta) = \mu

And we can find the expected value of each estimator like this:

E(\theta_1 ) = \frac{1}{7} E(X_1 +X_2 +... +X_7) = \frac{1}{7} [E(X_1) +E(X_2) +....+E(X_7)]= \frac{1}{7} 7\mu= \mu

So then we conclude that \theta_1 is unbiased.

For the second estimator we have this:

E(\theta_2) = \frac{1}{2} [2E(X_1) -E(X_3) +E(X_5)]=\frac{1}{2} [2\mu -\mu +\mu] = \frac{1}{2} [2\mu]= \mu

And then we conclude that \theta_2 is unbiaed too.

Part b

For this case first we need to find the variance of each estimator:

Var(\theta_1) = \frac{1}{49} (Var(X_1) +...+Var(X_7))= \frac{1}{49} (7\sigma^2) = \frac{\sigma^2}{7}

And for the second estimator we have this:

Var(\theta_2) = \frac{1}{4} (4\sigma^2 -\sigma^2 +\sigma^2)= \frac{1}{4} (4\sigma^2)= \sigma^2

And the relative efficiency is given by:

RE= \frac{Var(\theta_1)}{Var(\theta_2)}=\frac{\frac{\sigma^2}{7}}{\sigma^2}= \frac{1}{7}

5 0
3 years ago
Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it.
grandymaker [24]
(2x+1)^{\cot x}=\exp\left(\ln(2x+1)^{\cot x}\right)=\exp\left(\cot x\ln(2x+1)\right)=\exp\left(\dfrac{\ln(2x+1)}{\tan x}\right)

where \exp(x)\equiv e^x.

By continuity of e^x, you have

\displaystyle\lim_{x\to0^+}\exp\left(\dfrac{\ln(2x+1)}{\tan x}\right)=\exp\left(\lim_{x\to0^+}\dfrac{\ln(2x+1)}{\tan x}\right)

As x\to0^+ in the numerator, you approach \ln1=0; in the denominator, you approach \tan0=0. So you have an indeterminate form \dfrac00. Provided the limit indeed exists, L'Hopital's rule can be used.

\displaystyle\exp\left(\lim_{x\to0^+}\dfrac{\ln(2x+1)}{\tan x}\right)=\exp\left(\lim_{x\to0^+}\dfrac{\frac2{2x+1}}{\sec^2x}\right)

Now the numerator approaches \dfrac21=2, while the denominator approaches \sec^20=1, suggesting the limit above is 2. This means

\displaystyle\lim_{x\to0^+}(2x+1)^{\cot x}=\exp(2)=e^2
7 0
3 years ago
What is the domain of y =<br> cos-1^x?
kirza4 [7]

Answer:

A

Step-by-step explanation:

correct on edge

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is equivalent to 30/12
    15·2 answers
  • (2x9y^n)(4x2y10)=8x11y20
    14·1 answer
  • Which ones do not represent a function and which ones do represent a function and why?​
    11·1 answer
  • What does M equal in 4-m/2=10
    10·1 answer
  • Sb please help !!!!!
    5·1 answer
  • Last year, there were 380 students at woodland middle school. This year the student population will increase by 5percent. What w
    5·1 answer
  • What is the value of z?
    14·1 answer
  • The figure below is a rectangle. What is the value of x?
    5·2 answers
  • Match each number with its place in order from smallest (1st) to largest (6th).
    14·1 answer
  • Help me lol (please)
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!