<u>Answer:</u> The molarity of calcium hydroxide in the solution is 0.1 M
<u>Explanation:</u>
To calculate the concentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is 
We are given:

Putting values in above equation, we get:

Hence, the molarity of
in the solution is 0.1 M.
<h2>
Answer:</h2>
7 hydrogen atoms
<h2>
Explanation:</h2>
N<em><u>H4</u></em>C2<em><u>H3</u></em>02
In this problem we see the hydrogen atom twice, along with the numbers 4 and 3 next to them. (as shown above in bold & underlined)
So, in order to find how many there are in all you add both hydrogen atoms together-
H4+H3= H7
therefore, there are 7 hydrogen atoms in all
Answer:
HCl (aq) + KOH (aq) --------> KCl (aq) + H2O (l) [balanced molecular equation]
Explanation:
Balanced molecular equation has all the components of reaction written as "molecules" thus the name molecular (the other equations break appropriate components into ions, those are total ionic or net ionic equation)
We know hydrochloride acid solution is written as HCl (aq) and potassium hydroxide solution is written as KOH (aq). We know from our knowledge that when acids react with bases they make salt and water, so now we react!
HCl (aq) + KOH (aq) --------> KCl (aq) + H2O (l) [balanced molecular equation]
1. true, more effective collisions per second. Faster reaction
2. <span>How can the reaction be slowed down? (talking about how fast or slow the reaction is)
</span>3. True
4. Rate lower if surface area decrease
5. Fine powder form
6. True
7. False
Image questions:
1. False
2. Energy of reactants higher than products.