Answer:
(a) Ionic
(b) Nonpolar covalent
(c) Polar covalent
(d) Polar covalent
(e) Nonpolar covalent
(f) Polar covalent
<em>For those substances with polar covalent bonds, which has the least polar bond?</em> NO₂
<em>For those substances with polar covalent bonds, which has the most polar bond?</em> BF₃
Explanation:
<em>Are the bonds in each of the following substances ionic, nonpolar covalent, or polar covalent?</em>
The nature of a bond depends on the modulus of the difference of electronegativity (|ΔEN|) between the atoms that form it.
- If |ΔEN| = 0, the bond is nonpolar covalent.
- If 0 < |ΔEN| ≤ 2, the bond is polar covalent.
- If |ΔEN| > 2, the bond is ionic.
<em>(a) KCl</em> |ΔEN| = |EN(K) - EN(Cl)| = |0.8 - 3.0| = 2.2. The bond is ionic.
<em>(b) P₄</em> |ΔEN| = |EN(P) - EN(P)| = |2.1 - 2.1| = 0.0. The bond is nonpolar covalent.
<em>(c) BF₃</em> |ΔEN| = |EN(B) - EN(F)| = |2.0 - 4.0| = 2.0. The bond is polar covalent.
<em>(d) SO₂</em> |ΔEN| = |EN(S) - EN(O)| = |2.5 - 3.5| = 1.0. The bond is polar covalent.
<em>(e) Br₂</em> |ΔEN| = |EN(Br) - EN(Br)| = |2.8 - 2.8| = 0.0. The bond is nonpolar covalent.
<em>(f) NO₂</em> |ΔEN| = |EN(N) - EN(O)| = |3.0 - 3.5| = 0.5. The bond is polar covalent.
<span>[Cu(NH3)4]2+ forms a blue solution. When concentrated HCl is added to this solution, what color will the solution change to yellow.
Reason:
When conc. HCl is added to the solution containing </span>[Cu(NH3)4]2+, Cl- ions will replace NH3 and form [Cu(Cl)4]2- complex. This can be understood for the following reaction:
[Cu(NH3)4]2+ + Cl- ↔ [Cu(Cl)4]2- + NH3
The Cl- ion is a weak field ligand, while NH3 is a strong field ligand. Hence, Cl- will in less splitting of d-orbitals, as compared to NH3. Due to this, photons of different energies will be absorbed by these complexes, and hence they display different colours.
The balanced reaction is
3Na3PO4 + 2CuSO4 ------> 3Na2SO4 + Cu3(PO4)2
To balance this reaction of double displacement, we see first that this reaction maintain the valence numbers of every atom.
Then, to have the same value of Na in the two sides of the reaction we multiply for the number of the other side. So,
(Na3PO4)x 2
(Na2SO4)x3
As we can see either, we need to balance PO4 cause there are two molecules of this in the reactant side, so we have two molecules of PO4 in the product either.
Then we get
3Na3PO4 + 2CuSO4 ------> 3Na2SO4 + Cu3(PO4)2
To probe that balance was correct, you can verify that the charges are exactly the opposite.
Explanation:
Your Ice Cube will begin to melt making your Coffee Cooler than before. ... Your Coffee might have a weird taste from freezer water. I'd rather leave my cup of Coffee cool in the air than using Ice to change the structure of content.