1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
3 years ago
11

Help!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Mathematics
1 answer:
garik1379 [7]3 years ago
4 0

B is true. This my answer

You might be interested in
3(a+1.5)= -1.5 what does a equal
emmasim [6.3K]

Answer:

-2

Step-by-step explanation:

3(a+1.5)=-1.5

a+1.5 = - 1.5/3 = - 0.5

a = - 0.5 - 1.5 = - 2

7 0
2 years ago
Read 2 more answers
Use a half-angle identity to find the exact value of sinPi/8
stellarik [79]

Answer:

  sin(π/8) = (1/2)√(2-√2)

Step-by-step explanation:

Using the half-angle formula ...

  \sin{\dfrac{\theta}{2}}=\sqrt{\dfrac{1-\cos{\theta}}{2}}

We can let θ = π/4 and simplify the result as follows:

  \sin{\dfrac{\pi}{8}}=\sqrt{\dfrac{1-\cos{(\pi/4)}}{2}}=\sqrt{\dfrac{1-\dfrac{\sqrt{2}}{2}}{2}}=\sqrt{\dfrac{2-\sqrt{2}}{4}}\\\\=\boxed{\dfrac{1}{2}\sqrt{2-\sqrt{2}}}}

5 0
3 years ago
Read 2 more answers
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
While traveling to and from a certain destination, you realized increasing your speed by 40 mph saved 4 hours on your return. Th
Sholpan [36]

<u>Answer:</u>

An equation that relates the speeds of the two legs of the trip

  \frac{640}{x-40}+\frac{640}{x}=4

<u>Explanation:</u>

Given, we have to use x to represent the speed on the second leg

Speed on first leg when increasing your speed by 40 mph will be (x-40)

Distance is given as 640 miles and time is calculated as  

\text { Time }=\frac{\text { Distance travelled }}{\text { speed }}

According to the question, increasing speed saved four hours

Therefore, the equation that relates the speeds of the two legs of the trip will be

\frac{640}{x-40}+\frac{640}{x}=4

5 0
3 years ago
Find the value of x in each of the given triangles.​
navik [9.2K]

Answer:

12

Step-by-step explanation:

5x + 7x + 3x = 180°

15x = 180°

x = 180°÷15

x = 12

7 0
2 years ago
Other questions:
  • Work this out plzzzz x
    12·2 answers
  • Cameron went on a diet for 2 months (8 weeks). He drank 80 fluid ounces of water per day during the first 3 weeks of his diet an
    7·1 answer
  • Which value is a solution of the equation 85= 120-w?
    10·2 answers
  • PLZZZ HELPPP ME ASAP!!!
    5·1 answer
  • Find the distance between the following points (-2,4) (3,2)
    7·1 answer
  • O<br> How can you explain, without just using a rule, why 4.2 = 0.2 is the<br> same as 42 = 2?<br> I
    6·1 answer
  • PLEASSSSSE HELPPPPPP<br> This is my third post of this! I really need help
    9·1 answer
  • Please help me with these 6 questions
    15·1 answer
  • Please help!!
    10·2 answers
  • Find the inverse of the matrix A=<br><br> [4 -5]<br> [-7 9]
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!