Answer:
in the attached image is the reaction mechanism.
Explanation:
The first reaction (reaction 1) shown in the attached image is the Wolff-Kishner reduction, which is characterized when the carbonyl is reduced to an alkane in the presence of a hydrazine and a base. In reaction 1, the aldehyde reacts with hydrazine to produce oxime. This mechanism begins with the attack of the amine on the carbonyl group. Proton exchange happens and the water leaves the molecule.
In reaction 2, the KOH is deprotoned in nitrogen and organized to form the bond between the nitrogen molecule. this deprotonation releases the nitrogen gas
True
when a substance is impure, it boils over a range of temperature rather than a specific temperature
Answer:
Thermal energy in the form of heat moved from the fire to the skewer and marshmallow.
Explanation:
He holds a marshmallow on a metal skewer over a fire. A few seconds late, the marshmallow is cooked and the skewer feels warm.
Explanation:
A process in which water vapor changes into liquid state is known as condensation. As we know that when energy is released in a reaction then it is known as exothermic reaction and when energy is absorbed in a reaction then it is known as endothermic reaction.
As vapors have high energy so, when they change into liquid state then heat energy is released by them. Therefore, condensation is an exothermic reaction.
As per Le Chatelier's principle, any disturbance caused in an equilibrium reaction will tend to shift the equilibrium in a direction away from the disturbance.
So, when there will occur a decrease in temperature then molecules of a gas will come closer to each other. Hence, there will also occur a decrease in vapor pressure of the gas.
-20.16 KJ of heat are released by the reaction of 25.0 g of Na2O2.
Explanation:
Given:
mass of Na2O2 = 25 grams
atomic mass of Na2O2 = 78 gram/mole
number of mole = 
= 
=0. 32 moles
The balanced equation for the reaction:
2 Na2O2(s) + 2 H2O(l) → 4 NaOH(aq) + O2(g) ∆Hο = −126 kJ
It can be seen that 126 KJ of energy is released when 2 moles of Na2O2 undergoes reaction.
similarly 0.3 moles of Na2O2 on reaction would give:
= 
x = 
= -20.16 KJ
Thus, - 20.16 KJ of energy will be released.