The general form would be
Reactants ---> Products
Feso3 compound name
Iron(II) Sulfite FeSO3 Molecular Weight
Hope this helps!
Have a great day :)
Hello!
The pressure of the gas when it's temperature reaches 928 °C is 3823,36 kPa
To solve that we need to apply
Gay-Lussac's Law. It states that the pressure of a gas when the volume is left constant (like in the case of a sealed container like an aerosol can) is proportional to temperature. This is the relationship derived from this law that we use to solve this problem:

Have a nice day!
Answer:
Molarity = 0.7 M
Explanation:
Given data:
Volume of KCl = 20 mL ( 0.02 L)
Molarity = 3.5 M
Final volume = 100 mL (0.1 L)
Molarity in 100 mL = ?
Solution:
Molarity = number of moles of solute / volume in litter.
First of all we will determine the number of moles of KCl available.
Number of moles = molarity × volume in litter
Number of moles = 3.5 M × 0.02 L
Number of moles = 0.07 mol
Molarity in 100 mL.
Molarity = number of moles / volume in litter
Molarity = 0.07 mol /0.1 L
Molarity = 0.7 M
ANSWER
EXPLANATION
Given that
The energy released by the system is 12.4J
Work done on the surrounding is 4.2J
Follow the steps below to find the change in energy
In the given data, energy is said to be released to the surroundings
Recall, that exothermic reaction is a type of reaction in which heat is released to the surroundings. Hence, change in enthalpy is negative
Step 1; Write the formula for calculating change in energy

Since heat is released to the surrounding, then q = -12J
Recall, that work done by the system on the surroundings is always negative
Hence, w = -4.2J
Step 2; Substitute the given data into the formula in step 1

Therefore, the change i