<u>Answer: </u>The concentration of
in the solution is 
<u>Explanation:</u>
pH is defined as the negative logarithm of hydrogen ion concentration present in the solution.
.....(1)
We are given:
pH of solution = 2.5
Putting values in equation 1, we get:
![2.5=-\log [H^+]](https://tex.z-dn.net/?f=2.5%3D-%5Clog%20%5BH%5E%2B%5D)
![[H^+]=10^{-2.5}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-2.5%7D)
![[H^+]=3.16\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D3.16%5Ctimes%2010%5E%7B-3%7DM)
Hence, the concentration of
in the solution is 
_Award brainliest if helped!
Assume Specific Heat capacity of water = 4.186 J/g<span>°C
100g sample,
Q=mc</span>Δθ<span>
8360=100(4.186)(Final Temp.-22.0)
Final Temperature </span>≈<span>41.97</span><span>°C</span>
The question has missing information, the complete question is:
Cobalt(II) chloride forms several hydrates with the general formula CoCl₂.xH₂O, where x is an integer. If the hydrate is heated, the water can be driven off, leaving pure CoCl₂ behind. Suppose a sample of a certain hydrate is heated until all the water is removed, and it's found that the mass of the sample decreases by 22.0%. Which hydrate is it? That is, what is x?
Answer:
CoCl₂.26H₂O
Explanation:
The molar masses of the compounds that forms the hydrate are:
Co = 59 g/mol
Cl = 35.5 g/mol
H = 1 g/mol
O = 16 g/mol
The molar mass of CoCl₂ is 130 g/mol and of H₂O is 18 g/mol, thus for the hydrate, it will be 130 + 18x g/mol.
Let's suppose 1 mol of the compound. Thus, the mass of the hydrate is: 130 + 18x, and the mass of CoCl₂ will be 130 g. Because the mass decreassed by 22.0% :
0.22*(130 + 18x) = 130
130 + 18x = 590.91
18x = 460.91
x ≅ 26
Thus, the hydrate is CoCl₂.26H₂O
Hello!
1.00 L of a gas at STP is compressed to 473 mL. What is the new pressure of gas?
- <u><em>We have the following data:</em></u>
Vo (initial volume) = 1.00 L
V (final volume) = 473 mL → 0.473 L
Po (initial pressure) = 1 atm (pressure exerted by the atmosphere - in STP)
P (final pressure) = ? (in atm)
- <u><em>We have an isothermal transformation, that is, its temperature remains constant, if the volume of the gas in the container decreases, so its pressure increases. Applying the data to the equation Boyle-Mariotte, we have:</em></u>






<u><em>Answer: </em></u>
<u><em>The new pressure of the gas is 2.11 atm </em></u>
___________________________________

When mass Ti = density * volume
and when moles Ti = mass Ti/molar mass Ti
∴ Volume = 2.86 x 10^23 atom * ( 1 mol Ti / 6.022 x 10^23) * (47.867 g Ti / 1 mol Ti) *(1Cm3 / 4.5 g Ti )
= 5.05 Cm^3
when we assume that the sample of Ti is a cube:
and we assume the length = X
∴ V = X^3
∴X^3 = 5.05
∴X = ∛5.05
= 1.7 Cm