Answer:
Explanation:
Given that,
A portable music player is operating with 4 cell batteries connected in series, and each cell has a P.D of 1.5V.
Then,
Total potential difference is
P.D_total = V1 + V2 + V3 + V4
P.D_total = 1.5 + 1.5 + 1.5 + 1.4
P.D_total = 6V.
The music player provides a resistance of 15,000Ω
R = 15,000Ω
We want to find the current (I) flowing through the music player?
Using ohms law
V = IR
Where
V is the potential difference
I is the current
R is the resistance
Therefore,
I = V/R
I = 6 / 15,000
I = 4 × 10^-4 A
I = 0.4 × 10^-3 A
I = 0.4 mA.
So, 0.4mA is passing through the music player
Different densities have to have a reason - different pressure and/or humidity etc. If there is a different pressure, there is a mechanical force that preserves the pressure difference: think about the cyclones that have a lower pressure in the center. The cyclones rotate in the right direction and the cyclone may be preserved by the Coriolis force.
If the two air masses differ by humidity, the mixing will almost always lead to precipitation - which includes a phase transition for water etc. It's because the vapor from the more humid air mass gets condensed under the conditions of the other. You get some rain. In general, intense precipitation, thunderstorms, and other visible isolated weather events are linked to weather fronts.
At any rate, a mixing of two air masses is a nontrivial, violent process in general. That's why the boundary is called a "front". In the military jargon, a front is the contested frontier of a conflict. So your idea that the air masses could mix quickly and peacefully - whatever you exactly mean quantitatively - either neglects the inertia of the air, a relatively low diffusion coefficient, a low thermal conductivity, and/or high latent heat of water vapor. A front is something that didn't disappear within minutes so pretty much tautologically, there must be forces that make such a quick disappearance impossible.
D. convergent plate boundary involving an oceanic plate
Answer:

Explanation:
The equation relating the the enthalphy, pressure and temperature is expressed as

Where P is the pressure, H is the enthalphy, and T is the temperature.
since the given values are

if we insert values, we arrive at
