Answer:
2.36 x 10^6 Hz
Explanation:
We know ;,
Iamp = 1.8mA
L = 0.45mH
VL = 12V
VL = IwL
VL = I x 2π x f x L
f = VL / (I x 2π x L)
f = 12 V/ (1.8mA x 2π x 0.45mH)
f = 12/(1.8x10^-3 x 2π x 0.45 x 10^-3)
f = 2.36 x 10^6 Hz
Answer: perpendicular to it oscillations.
Explanation: A transverse wave is a wave whose oscillations is perpendicular to the direction of the wave.
By perpendicular, we mean that the wave is oscillating on the vertical axis (y) of a Cartesian plane and the vibration is along the horizontal axis (x) of the plane.
Examples of transverse waves includes wave in a string, water wave and light.
Let us take a wave in a string for example, you tie one end of a string to a fixed point and the other end is free with you holding it.
If you move the rope vertically ( that's up and down) you will notice a kind of wave traveling away from you ( horizontally) to the fixed point.
Since the oscillations is perpendicular to the direction of wave, it is a transverse wave
Answer:
3.6 m/s
Explanation:
From the law of conservation of momentum,
Total momentum before jump = Total momentum after jump
<em>Note: Before Dan jump off the skateboard, they where both moving with the same velocity</em>
u(m+m') = mv+m'v'................. Equation 1
Where m = Dan's mass, m' = mass of the skateboard, u = common velocity before the jump, v = Dan's final velocity, v' = The final velocity of the skateboard.
make v the subject of the equation
v = [u(m+m')-m'v')]/m.............. Equation 2
Given: u = 4.0 m/s, m = 50 kg, m' = 5 kg, v' = 8 m/s
Substitute into equation 2
v = [4(50+5)-(5×8)]/50
v = (220-40)/50
v = 180/50
v = 3.6 m/s