1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
professor190 [17]
3 years ago
14

A popular classroom demonstration is to place a gas can on a burner and boil water in it. Left unchecked this has the potential

to be a very boring demo. However the can is removed from the flame and the lid is screwed on tightly. After it cools down the can will
A) still be boring and not change.
B) shrivel up, since colder gases have less pressure.
C) bulge and expand, since colder gases are denser and exert more pressure
D) shrivel up, since the atmosphere exerts more force on the can as it cools.
Physics
1 answer:
marysya [2.9K]3 years ago
5 0

Answer:

D) shrivel up, since the atmosphere exerts more force on the can as it cools.

Explanation:

As the water in the can is boiled the can gets heated up and contains hot vapour and gases which are rare in density and are in their expanded state. In this state when the can is sealed tightly such that no air leaks in or out of the can. When the temperature of the can drops, the gases shrink in volume and the pressure inside the can become less than the pressure of the atmosphere which leads to shriveling of the can.

You might be interested in
Monochromatic light with a wavelength of 384 nm passes through a single slit and falls on a screen 86 cm away. If the distance o
valkas [14]
This is a Fraunhofer single slit experiment, where the light passing through the slit produces an interference pattern on the screen, and where the dark bands (minima of diffraction) are located at a distance of
y= \frac{m\lambda D}{a}
from the center of the pattern. In the formula, m is the order of the minimum, \lambda the wavelenght, D the distance of the screen from the slit and a the width of the slit.

In our problem, the distance of the first-order band (m=1) is y=0.22 cm. The distance of the screen is D=86 cm while the wavelength is \lambda = 384 nm=384 \cdot 10^{-7}cm. Using these data and re-arranging the formula, we can find a, the width of the slit:
a= \frac{m \lambda D}{y}= \frac{1 \cdot 384 \cdot 10^{-7}cm \cdot 86 cm}{0.22 cm}=0.015 cm
3 0
3 years ago
True or false earth orbit is nearly circular
Simora [160]
The answer would be true
4 0
3 years ago
Read 2 more answers
On her trips from home to school, karla drives along the streets after exiting the driveway. She drives 1.85 miles south, 2.43 m
12345 [234]
0019235829mamNabshwwhbw
6 0
2 years ago
What happens to an electromagnetic wave as it passes from space to matter?
alina1380 [7]

Answer:

When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected.

4 0
2 years ago
Read 2 more answers
A space probe is fired as a projectile from the Earth's surface with an initial speed of 2.05 104 m/s. What will its speed be wh
Elanso [62]

Answer:

The value is  v  =  2.3359 *10^{4} \ m/s

Explanation:

From the question we are told that

  The  initial speed is u =  2.05 *10^{4} \  m/s

 Generally the total energy possessed by the space probe when on earth is mathematically represented as

             T__{E}} =  KE__{i}} +  KE__{e}}

Here  KE_i is the kinetic energy of the space probe due to its initial speed which is mathematically represented as

          KE_i =   \frac{1}{2}  *  m  *  u^2

=>       KE_i =   \frac{1}{2}  *  m  *  (2.05 *10^{4})^2

=>       KE_i =  2.101 *10^{8} \ \ m \ \ J

And  KE_e is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

       KE_e =  \frac{1}{2}  *  m *  v_e^2

Here v_e is the escape velocity from earth which has a value v_e =  11.2 *10^{3} \  m/s

=>    KE_e =  \frac{1}{2}  *  m *  (11.3 *10^{3})^2

=>    KE_e =  6.272 *10^{7} \  \  m  \ \   J

Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

        KE_p =  \frac{1}{2}  *  m *  v^2

Generally from the law energy conservation we have that

        T__{E}} =  KE_p

So

       2.101 *10^{8}  m  +  6.272 *10^{7}  m  =   \frac{1}{2}  *  m *  v^2

=>     5.4564 *10^{8} =   v^2

=>     v =  \sqrt{5.4564 *10^{8}}

=>     v  =  2.3359 *10^{4} \ m/s

4 0
2 years ago
Other questions:
  • Triton is a moon of Neptune. It has a
    10·1 answer
  • A force has to have what two factors? Magnitude and Velocity. Velocity and Acceleration. Magnitude and Direction. Size and Speed
    5·1 answer
  • What happens when a star exhausts its core hydrogen supply?
    11·1 answer
  • What type of infant temperament is generally associated with better adjustment in adulthood?
    12·1 answer
  • imagine you are working as a rollercoaster designer. you are building a ride the top speed of a 65m/s at the bottom of the first
    14·1 answer
  • The __________muscle raises the eyebrows and causes wrinkles across the forehead.
    10·1 answer
  • Hydrogen gas is maintained at 3 bars and 1 bar on opposite sides of a plastic membrane which is .3 mm thick. The temperature is
    5·1 answer
  • Don't you ever feel like thursday is like the number 7?
    7·1 answer
  • 4. Find the density of 2750 g of a substance that occupies 250 mL.​
    9·1 answer
  • 24 A person stands at the side of a straight railway track. A train moves towards the person and emits sound from its whistle. T
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!