Refractive index is the ration of sin i to sin r where i is the incident angle and r is the refraction angle.
Therefore, refractive index = sin 79.5 / sin 39.6
= 1.542
The refractive index may be given by the ratio of refractive index of medium 2 to refractive index of medium 1.
Therefore, 1.542 = n/1.0003
n = 1.5425
≈ 1.54
Medium 2 is sodium chloride, refractive index of 1.54
A geyser is actually a devise that coverts electrical energy
into heat energy for heating up water. The heating element that is inside the
geyser actually gets heated up and then in turn it heats the water in contact
with it within the geyser. There is also a thermostat device within the geyser
that cuts off the heating when the water temperature reaches the desired level.
This helps in stopping of electrical energy loss. One inlet brings in cold
water while another outlet gets rid of the hot water. When the temperature of
the water falls below the desired level the heating is again started by the
thermostat.
It depends on your definition of “ancient.” Radiometric dating using Carbon-14 can reliably date back to about 50,000 years, uranium-lead or lead-lead dating can date back multiple millions, potassium-argon dating can reach 1.5 billion, and rubidium-strontium can reach 50 billion (nearly 4x the age of the universe). It depends on the context in which this question is being asked.
I think that by "Classical physics" is meant low speed things. By low speed, I think is meant speed far below very roughly half the speed of light, so that Relativistic, special or general, effects can be ignored. Or at least it is hoped that they can be ignored.
Fire extinguishers and rockets get propelled by forcing out large amounts of material (gases under very high pressure) through a nozzle, and the RECOIL from that propels something forward. So, if the action is the ejection of material, the reaction (recoil) is the ejector moving along the same line in the other direction. And that's an example of Newton's third law.
Given a propulsion system, the magnitude of the force recoiling on the ejector will change the momentum of the ejector, often written as the equation F=ma where F is the force, m is the mass being accelerated, and a being the acceleration.
Just as something will stay still until it is moved - inertia - so once set in uniform motion in a straight line, the thing will continue in that motion, theoretically for ever or until something alters its momentum. Newton's first law is to the effect of "every body continues in a state of rest or uniform motion in a straight line unless acted on by a resultant external force". Which, I think, is where the concept of inertia stems from.
I think that the above mostly tcuches on the 3 laws.Any more help needed, please ask.
1.)
Velocity is in m/s, and acceleration is in m/s^2 like you said. Because of this, we can calculate this by dividing the speed by the time it took to get to that speed.
(20 meters/second) / 10 seconds = 2 meters/ second^2
2.)
Same thing with the first one.
(100 meters/second) / 4 seconds = 25 meters / seconds^2