Answer:
Explanation:
Given
mass of children 

distance between two children 
suppose small child is at a distance of x m from pivot point
so torque of small child and heavier child must be equal



Answer:
6.05 cm
Explanation:
The given equation is
2 aₓ(x-x₀)=( Vₓ²-V₀ₓ²)
The initial head velocity V₀ₓ =11 m/s
The final head velocity Vₓ is 0
The accelerationis given by =1000 m/s²
the stopping distance = x-x₀=?
So we can wind the stopping distance by following formula
2 (-1000)(x-x₀)=[
]
x-x₀=6.05*
m
=6.05 cm
Answer:
The correct answer is Option A (decrease).
Explanation:
- According to Heisenberg's presumption of unpredictability, it's impossible to ascertain a quantum state viewpoint as well as momentum throughout tandem.
- Also, unless we have accurate estimations throughout the situation, we will have a decreased consistency throughout the velocity as well as vice versa though too.
Other given choices are not connected to the given query. Thus the above is the right answer.
I belive what your looking for is oxygen
Answer:
Maximum height reached by the ball is 32 meters.
Explanation:
It is given that,
If a baseball is project upwards from the ground level with an initial velocity of 32 feet per second, then it's height is a function of time. The equation is given as :
...........(1)
t is the time taken
s is the height attained as a function of time.
Maximum height achieved can be calculated as :


-16 t + 32 = 0
t = 2 seconds
Put the value of t in equation (1) as :

s = 32 meters
So, the maximum height reached by the ball is 32 meters. Hence, this is the required solution.