<u>T</u><u>h</u><u>e</u><u> </u><u>s</u><u>t</u><u>a</u><u>t</u><u>e</u><u>m</u><u>e</u><u>n</u><u>t</u><u>s</u><u> </u><u>t</u><u>r</u><u>u</u><u>e</u><u> </u><u>f</u><u>o</u><u>r</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>g</u><u>i</u><u>v</u><u>e</u><u>n</u><u> </u><u>f</u><u>u</u><u>n</u><u>c</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>a</u><u>r</u><u>e</u><u>:</u>
I tried them all and these two were correct, their solutions are as follows:
= f(x) = 1/2x + 3/2
= f(0) = 1/2 × 0 + 3/2
= f(0) = 0 + 3/2
= f(0) = 3/2
= f(x) = 1/2x + 3/2
= f(4) = 1/2 × 4 + 3/2
= f(4) = 2 + 3/2
= f(4) = 4+3/2
= f(4) = 7/2
So, that's how these two are correct.
It would take 2.8 hours ((3.5 hours x 2.4 Mph)/3Mph) hours for Max to cover the same route walking 3 mph. This problem can be solved by using the velocity equation which is the velocity is equal a change in position divided by a change of time. The amount of time can be found assuming that Max walks in a constant velocity from the starting point until the finish point of 8.4 miles distance (3.5 hours x 2.4 mph)<span>.</span>
1 oz = 0.0625 lbs or 1/16 lbs
1 lb = 16 oz
Hope I helped!
20.sometimes
21.always
22.always
23.sometimes
Answer:
The exponential growth function is
Step-by-step explanation:
Given: The population of a certain city was 145,380 in 2000 and 219,135 in 2010.
To find: exponential growth function that models the growth of the city
Solution:
The exponential growth function is given by
Here, P denotes total population after time t
denotes initial population
k denotes rate of growth
t denotes time
As ,
As