By using <span>De Moivre's theorem:
</span>
If we have the complex number ⇒ z = a ( cos θ + i sin θ)
∴
![\sqrt[n]{z} = \sqrt[n]{a} \ (cos \ \frac{\theta + 360K}{n} + i \ sin \ \frac{\theta +360k}{n} )](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bz%7D%20%3D%20%20%5Csqrt%5Bn%5D%7Ba%7D%20%5C%20%28cos%20%5C%20%20%5Cfrac%7B%5Ctheta%20%2B%20360K%7D%7Bn%7D%20%2B%20i%20%5C%20sin%20%5C%20%5Cfrac%7B%5Ctheta%20%2B360k%7D%7Bn%7D%20%29)
k= 0, 1 , 2, ..... , (n-1)
For The given complex number <span>⇒ z = 81(cos(3π/8) + i sin(3π/8))
</span>
Part (A) <span>
find the modulus for all of the fourth roots </span>
<span>∴ The modulus of the given complex number = l z l = 81
</span>
∴ The modulus of the fourth root =
Part (b) find the angle for each of the four roots
The angle of the given complex number =

There is four roots and the angle between each root =

The angle of the first root =

The angle of the second root =

The angle of the third root =

The angle of the fourth root =
Part (C): find all of the fourth roots of this
The first root =

The second root =

The third root =

The fourth root =
Answer:
115.3 hertz
Step-by-step explanation:
For either interval, the value of the sample mean is given by the average of the lower and upper bound of the confidence interval. Since both intervals were constructed by using the same sample, both values should be equal.
For the first interval:

For the second interval:

Answer:
0.342
Step-by-step explanation:
Answer:
.............
Step-by-step explanation:
...............