Answer : The entropy change for the surroundings of the reaction is, -198.3 J/K
Explanation :
We have to calculate the entropy change of reaction
.

![\Delta S^o=[n_{NH_3}\times \Delta S^0_{(NH_3)}]-[n_{N_2}\times \Delta S^0_{(N_2)}+n_{H_2}\times \Delta S^0_{(H_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BNH_3%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28NH_3%29%7D%5D-%5Bn_%7BN_2%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28N_2%29%7D%2Bn_%7BH_2%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28H_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of 
= standard entropy of 
= standard entropy of 
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (192.5J/K.mole)]-[1mole\times (191.5J/K.mole)+3mole\times (130.6J/K.mole)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28192.5J%2FK.mole%29%5D-%5B1mole%5Ctimes%20%28191.5J%2FK.mole%29%2B3mole%5Ctimes%20%28130.6J%2FK.mole%29%5D)

Therefore, the entropy change for the surroundings of the reaction is, -198.3 J/K
A solid is hard and the molecules are packed together, a liquid can move around freely because the molecules aren't as packed together :)
Answer: 6.2 grams of the sodium acetate can dissolve in 5 milliliters of water. if 124 grams of the sodium acetate dissolves in 100 milliliters of water, then 6.2 grams of the sodium acetate can dissolve in 5 milliliters of water.
Answer:
The correct answer is - D. the energy stored inside the center of an atom.
Explanation:
Each atom has a small center in it called the nucleus and the energy that holds the nucleus or center of the atom together in the atom is known as nuclear energy.
It is the energy that is stored in the center of the atom and normally does not come out, however, in some radioactive atoms the sends some part of the energy as radiation.
Thus, the correct answer is - D. the energy stored inside the center of an atom.
Answer is C.
Converting temperatures to degrees K: 33 degrees C = 306 K and -55 = 218 degrees K.
By the ideal gas law:-
760 * 0.50 / 306 = P * 0.10 / 218
P = 760 * 0.50 * 218 / 306 * 0.10
= 2700 mm Hg answer