Answer:
H2O
Explanation:
hydrogen has 1 electron
and oxygen has 6 electron which form a water molecule Atom
Answer:
-100 kJ
Explanation:
We can solve this problem by applying the first law of thermodynamics, which states that:

where:
is the change in internal energy of a system
Q is the heat absorbed/released by the system (it is positive if absorbed by the system, negative if released by the system)
W is the work done by the system (it is positive if done by the system, negative if done on the system)
For the system in this problem we have:
W = +147 kJ is the work done by the system
Q = +47 kJ is the heat absorbed by the system
So , its change in internal energy is:

c well actually I remember being tought this but I cant remember it 100
The de Broglie wavelength of a subatomic particle is 2.09 nm.
λ = h m v = h
momentum : wherein 'h' is the Plank's steady. This equation pertaining to the momentum of a particle with its wavelength is de Broglie equation and the wavelength calculated the use of this relation is de Broglie wavelength.
Frequency is the ratio of velocity and wavelength in relation to hurry. In evaluation, wavelength refers back to the ratio of velocity and frequency.
Wavelength is the gap between the crests of waves or a person's fashionable mind-set. An instance of wavelength is the gap between the crest of two waves. An instance of wavelength is while you and some other character share the equal standard attitude and might for that reason speak properly.
calculation is given in the image below
de Broglie wavelength λ = h/mv
= (6.626 * 10^-34)/9.1 * 10^-31 *351 *10^3
= 2.07 *10^-9
Hence, = 2.op nm
Learn more about de Broglie wavelength here:-brainly.com/question/16595523
#SPJ4
Answer:
The molar concentration of HCl in the aqueous solution is 0.0131 mol/dm3
Explanation:
To get the molar concentration of a solution we will use the formula:
<em>Molar concentration = mass of HCl/ molar mass of HCl</em>
<em></em>
Mass of HCl in the aqueous solution will be 40% of the total mass of the solution.
We can extract the mass of the solution from its density which is 1.2g/mL
We will further perform our analysis by considering only 1 ml of this aqueous solution.
The mass of the substance present in this solution is 1.2g.
<em>The mass of HCl Present is 40% of 1.2 = 0.48 g.</em>
The molar mass of HCl can be obtained from standard tables or by adding the masses of Hydrogen (1 g) and Chlorine (35.46 g) = 36.46g/mol
Therefore, the molar concentration of HCl in the aqueous solution is 0.48/36.46 = 0.0131 mol/dm3