it will expand as water moves into it.
First, we determine how many electrons can each subshell hold:
s can hold 2 electrons
p can hold 6 electrons
d can hold 10 electrons
f can hold 14 electrons
Second, we start distributing the 10 electrons on the orbitals of subshells based on the arrangement shown in the question :
1s will hold 2 electrons
2s will hold 2 electrons
2p will hold 6 electrons
All other orbitals will will hold zero electrons as the 10 were distributed among the first 2
Answer: 1s: 2
2s: 2
2p: 6
<span> 3s: 0
3p: 0
4s: 0
3d: 0
4p: 0
5s: 0</span>
from google, so I think the answer to that question is the second one
Answer : It takes time for the concentration to decrease to 0.100 M is, 22.4 s
Explanation :
Formula used to calculate the rate constant for zero order reaction.
The expression used is:
![\ln [A]=-kt+\ln [A_o]](https://tex.z-dn.net/?f=%5Cln%20%5BA%5D%3D-kt%2B%5Cln%20%5BA_o%5D)
where,
= initial concentration = 0.537 M
= final concentration = 0.100 M
t = time = ?
k = rate constant = 0.075 M/s
Now put all the given values in the above expression, we get:


Therefore, it takes time for the concentration to decrease to 0.100 M is, 22.4 s