Answer:
26000 years
Explanation:
Precession describes the angular motion of the Earth's body. Since the attitude of telescopes relative to the Earth's body can be controlled with high accuracy, and telescopes can measure the direction of incoming light also with high accuracy, the motion of Earth is under permanent high precision monitoring. Thus the basic numerical descriptor of precission, an angular rate of 5029.0966 seconds of arc per Julian century, traditionally denoted p (for precession) is a measured value from observed coordinate changes of thousands of stars over, say, two centuries. The understanding of this value in terms of forces acting on an oblate Earth from the Moon is well understood so that an extrapolation back and forth over a few full cycles contains little uncertainties. Of course, you can find details on the coordinate transformations mentioned above (the direct observational effect of precession) on the net. I was surprised to see that the Wikipedia article on precession covers the astronomical aspect very poorly. You thus better look for other sources.
Answer:a)1.11×10^-21Nm
b) 1.16×10^-3m
Explanation:see attachment
Answer:
With this information is not possible to calculate the mass.
Explanation:
This is a characteristic problem of energy conservation, where kinetic energy becomes potential energy. For this particular problem, we have the initial speed as input data. The moment the ball comes out of the cannon we have the maximum kinetic energy, as the ball goes up the ball will gain more potential energy as the ball loses kinetic energy, until the moment the ball reaches the maximum height. At the maximum height point, the ball will have its maximum potential energy while its kinetic energy is zero. In other words, all the kinetic energy that was, in the beginning, was transformed into potential energy.

In the above equation the masses are canceled and we can determine the maximum height, by means of the initial speed.
![h=\frac{0.5*v^2}{g} [m]](https://tex.z-dn.net/?f=h%3D%5Cfrac%7B0.5%2Av%5E2%7D%7Bg%7D%20%5Bm%5D)
But the mass cannot be determined, since it would be necessary to know the value of the energy, in order to determine the value of the mass.
Answer:
The answer is false
Explanation:
Though the mostly used SI unit of measurement or the most popular units are the
Length,
Time and
Mass
i.e meter (m), seconds (s), kilogram (kg)
Aside all the above stated units for measurements there are other four basic units which are itemized bellow.
they are
1. Amount of substance - mole (mole)
2. Electric current - ampere (A)
3. Temperature - kelvin (K)
4. Luminous intensity - candela (cd)