To reduce the internal energy U of an ideal gas you need the gas to lose heat and/or do work.
Answer:
d = <23, 33, 0> m
, F_W = <0, -9.8, 0>
, W = -323.4 J
Explanation:
We can solve this exercise using projectile launch ratios, for the x-axis the displacement is
x = vox t
Y Axis
y =
t - ½ g t²
It's displacement is
d = x i ^ + y j ^ + z k ^
Substituting
d = (23 i ^ + 33 j ^ + 0) m
Using your notation
d = <23, 33, 0> m
The force of gravity is the weight of the body
W = m g
W = 1 9.8 = 9.8 N
In vector notation, in general the upward direction is positive
W = (0 i ^ - 9.8 j ^ + 0K ^) N
W = <0, -9.8, 0>
Work is defined
W = F. dy
W = F dy cos θ
In this case the force of gravity points downwards and the displacement points upwards, so the angle between the two is 180º
Cos 180 = -1
W = -F y
W = - 9.8 (33-0)
W = -323.4 J
Answer: It wouldn't be as modern as today is we would be back to using oil and other things from back then there wouldn't be cars everything would be less machined.
Answer:
open cluster. globular cluster. eclipsing binary
Answer: True.
Explanation:
A resistance force is also known as friction. And the efficiency of a machine is affected by friction.
A machine of lower efficiency has higher magnitude of friction than a machine of higher efficiency.
Therefore, To obtain the same resistance force, a greater force must be exerted in a machine of lower efficiency than in a machine of higher efficiency. This is true