Answer:
electrons
Explanation:
An electric current is said to exist when there is a net flow of electric charge through a region. In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).
Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg
Insulator, or a semi-conductor. A semi-conductor is a specific type of insulator.
Answer:
The y-component of the normal force is 45.74 N.
Explanation:
Given that,
Mass of the crate, m = 5 kg
Angle with hill, 
We need to find the y component of the normal force. We know that the y component of the normal force is given by :

So, the y-component of the normal force is 45.74 N. Hence, this is the required solution.
Using Planck's equation,
E = nhc / λ
Also, Power = Energy / time
E = 20 x 10⁻³ x 60 x 60
E = 108 J
108 = (2.29 x 10²⁰ x 6.63 x 10⁻³⁴ x 3 x 10⁸) / λ
λ = 4.22 x 10⁻⁷ m