1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kay [80]
3 years ago
9

¿Cuál de las siguientes fracciones es menor? 5/2 1/4 1/2 8/10​

Mathematics
1 answer:
snow_lady [41]3 years ago
8 0

Answer:

\frac{5}{2}  = 2.5 \\  \frac{1}{4}  = 0.25 \\  \frac{1}{2}  = 0.5 \\  \frac{8}{10}  = 0.8 \\ 0.25 < 0.5 < 0.8  < 2.5

You might be interested in
What is the difference? Negative 6 minus (11)
aleksklad [387]

Answer:

-17

Step-by-step explanation:

-6-11=-17

4 0
3 years ago
Which term describes the fraction that has a variable or a variable expression
Lilit [14]
A term that describes the fraction that has a variable or valuable expression proper factor

3 0
3 years ago
I need the answer for this
Svetach [21]

Answer:

535.9 ft²

Step-by-step explanation:

Since there are 360° in a circle, and 240° is 2/3 of 360°, we can say that the area of the bolded sector is <em>2/3 the area of the whole circle</em>. The area of a circle with a radius of r is πr², or approximately 3.14r², so the area of the whole circle is ≈ 3.14(16)² = 3.14(256) = 803.84 ft². Taking 2/3 of this gets us 803.84 * (2/3) ≈ 535.9 ft²

6 0
3 years ago
Jim earns $1,600 per month after taxes. He is working on his budget and has the first three categories finished. Why will he hav
marissa [1.9K]
What are the answers?
8 0
3 years ago
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
2 years ago
Other questions:
  • Each exterior angle of an equilateral triangle has which measure?
    6·2 answers
  • A researcher sends out a survey to 740 subjects by mail and receives completed surveys from 65% of the subjects. How many survey
    8·1 answer
  • Please help me understand this
    12·2 answers
  • What is the price of one crate of flowers?
    5·2 answers
  • 2. Interpola:
    14·1 answer
  • Find the product.<br> орол<br> (5)(1).<br> (6)(7)
    13·1 answer
  • Solve for x, rounding to the nearest hundredth.<br> 10^3x = 98
    6·1 answer
  • Find the additive inverse of 9/10 need help
    9·2 answers
  • Graph the line.<br><br> y= -3x-1
    10·1 answer
  • How many x-intercepts does the graph of y=2x^2-4x+2 have?<br> A.) 2<br> B.)1<br> c.)0
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!