ŷ= 1.795x +2.195 is the equation for the line of best fit for the data
<h3>How to use regression to find the equation for the line of best fit?</h3>
Consider the table in the image attached:
∑x = 29, ∑y = 74, ∑x²= 125, ∑xy = 288, n = 10 (number data points)
The linear regression equation is of the form:
ŷ = ax + b
where a and b are the slope and y-intercept respectively
a = ( n∑xy -(∑x)(∑y) ) / ( n∑x² - (∑x)² )
a = (10×288 - 29×74) / ( 10×125-29² )
= 2880-2146 / 1250-841
= 734/409
= 1.795
x' = ∑x/n
x' = 29/10 = 2.9
y' = ∑y/n
y' = 74/10 = 7.4
b = y' - ax'
b = 7.4 - 1.795×2.9
= 7.4 - 5.2055
= 2.195
ŷ = ax + b
ŷ= 1.795x +2.195
Therefore, the equation for the line of best fit for the data is ŷ= 1.795x +2.195
Learn more about regression equation on:
brainly.com/question/29394257
#SPJ1
Speed of the plane: 250 mph
Speed of the wind: 50 mph
Explanation:
Let p = the speed of the plane
and w = the speed of the wind
It takes the plane 3 hours to go 600 miles when against the headwind and 2 hours to go 600 miles with the headwind. So we set up a system of equations.
600
m
i
3
h
r
=
p
−
w
600
m
i
2
h
r
=
p
+
w
Solving for the left sides we get:
200mph = p - w
300mph = p + w
Now solve for one variable in either equation. I'll solve for x in the first equation:
200mph = p - w
Add w to both sides:
p = 200mph + w
Now we can substitute the x that we found in the first equation into the second equation so we can solve for w:
300mph = (200mph + w) + w
Combine like terms:
300mph = 200mph + 2w
Subtract 200mph on both sides:
100mph = 2w
Divide by 2:
50mph = w
So the speed of the wind is 50mph.
Now plug the value we just found back in to either equation to find the speed of the plane, I'll plug it into the first equation:
200mph = p - 50mph
Add 50mph on both sides:
250mph = p
So the speed of the plane in still air is 250mph.
Because you know the area and that the shape is a square... if the side length is "s"... to find "s" you would say...
s²=1.69
Take the root of both sides and...
s=1.3 km
Answer:
The linear factors of a polynomial are the first-degree equations that are the building blocks of more complex and higher-order polynomials
Step-by-step explanation: