Answer:
The first statement is incorrect. They have to be complementary.
Step-by-step explanation:
You can't say the measure of angle B is congruent to theta because it is possible for angles in a right triangle to be different.
You can only say that what he said is true if the angle was 45 degrees, but based on the information provided it is not possible to figure that out.
The other two angles other than the right angle in a right triangle have to add up to 90 degrees, which is the definition of what it means for two angles to be complementary. A is the correct answer.
Megan:
x to the one third power =

<span>x to the one twelfth power = </span>

<span>The quantity of x to the one third power, over x to the one twelfth power is:
</span>

<span>
Since </span>

then

Now, just subtract exponents:
1/3 - 1/12 = 4/12 - 1/12 = 3/12 = 1/4

Julie:
x times x to the second times x to the fifth = x * x² * x⁵
<span>The thirty second root of the quantity of x times x to the second times x to the fifth is
</span>
![\sqrt[32]{x* x^{2} * x^{5} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B32%5D%7Bx%2A%20x%5E%7B2%7D%20%2A%20x%5E%7B5%7D%20%7D%20)
<span>
Since </span>

Then
![\sqrt[32]{x* x^{2} * x^{5} }= \sqrt[32]{ x^{1+2+5} } =\sqrt[32]{ x^{8} }](https://tex.z-dn.net/?f=%5Csqrt%5B32%5D%7Bx%2A%20x%5E%7B2%7D%20%2A%20x%5E%7B5%7D%20%7D%3D%20%5Csqrt%5B32%5D%7B%20x%5E%7B1%2B2%2B5%7D%20%7D%20%3D%5Csqrt%5B32%5D%7B%20x%5E%7B8%7D%20%7D)
Since
![\sqrt[n]{x^{m}} = x^{m/n} }](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%7D%20%3D%20x%5E%7Bm%2Fn%7D%20%7D%20)
Then
![\sqrt[32]{ x^{8} }= x^{8/32} = x^{1/4}](https://tex.z-dn.net/?f=%5Csqrt%5B32%5D%7B%20x%5E%7B8%7D%20%7D%3D%20x%5E%7B8%2F32%7D%20%3D%20x%5E%7B1%2F4%7D%20)
Since both Megan and Julie got the same result, it can be concluded that their expressions are equivalent.
Answer:
f(-2) = -6
Step-by-step explanation:
2(-2-3) + 4
2(-5) + 4
-10 + 4
-6
Answer:
Properties of Real Numbers ...
Step-by-step explanation:
Commutative Property of Multiplication (Numbers) 2 • 10 = 10 • 2
Associative Property of Addition (Numbers) 5 + (6 + 7) = (5 + 6) + 7
Associative Property of Multiplication (Numbers) 6 • (3 • 2) = (6 • 3) • 2
Additive Identity (Numbers) 6 + 0 = 6