B - Atomic number. Dmitri Mendeleev organised the table according to atomic weight, however this caused problems with elements such as iodine and tellurium, Iodine has a higher mass, but a lower atomic number. And to make iodine in the same group as similar elements (halogens), Mendeleev had to break his own rules and put it before tellurium in the table. Moseley fixed this problem by ordering the elements according to atomic (proton) number.
Remember that:
number of moles = mass/molar mass
First, we get the molar mass of the nitrogen gas molecule:
It is known the the nitrogen gas is composed of two nitrogen atoms, each with molar mass 14 gm (from the periodic table)
Therefore, molar mass of nitrogen gas = 14 x 2 = 28 gm
Second we calculate the mass of the precipitate:
we have number of moles = 0.03 moles (given)
and molar mass = 28 gm (calculated)
Using the equation mentioned before,
mass = number of moles x molar mass = 0.03 x 28 = 0.84 gm
1) Calcium carbonate contains 40.0% calcium by weight.
M(CaCO₃)=100.1 g/mol
M(Ca)=40.1 g/mol
w(Ca)=40.1/100.1=0.400 (40.0%)!
2) Mass fraction of this is excessive data.
3) The solution is:
m(Ca)=1.2 g
m(CaCO₃)=M(CaCO₃)*m(Ca)/M(Ca)
m(CaCO₃)=100.1g/mol*1.2g/40.1g/mol=3.0 g
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Total vapor pressure can be calculated using partial vapor pressures and mole fraction as follows:

Here,
is mole fraction of A,
is mole fraction of B,
is partial pressure of A and
is partial pressure of B.
The mole fraction of A and B are related to each other as follows:

In this problem, A is hexane and B is octane, mole fraction of hexane is given 0.580 thus, mole fraction of octane can be calculated as follows:

Partial pressure of hexane and octane is given 183 mmHg and 59.2 mmHg respectively.
Now, vapor pressure can be calculated as follows:

Putting the values,

Therefore, total vapor pressure over the solution of hexane and octane is 131 mmHg.