Answer : Methanal also known as Formaldehyde
is a chemical Aldehyde which contain ( -CHO) group.
Explanation :
In organic chemistry, a carbonyl group is a functional group which contain a carbon atom double-bonded to an oxygen atom i.e, ( C=O).
If carbonyl group is present in a compound then it can be a carboxylic (RCOOH), aldehyde (RCHO), ketone (RCOR'), ester ((RCOOR') or amide (RCONR'R") group.
Here are some functional groups naming according to the<em> IUPAC</em> rules and image also attached,
Carboxylic acid → (RCOOH) → ( name end in 'OIC ACID' )
Aldehyde → (RCOH) → ( name end in 'AL' )
Ketone → (RCOR') → ( name end in 'ONE' )
Ester → (RCOOR') → ( name end in 'ATE' )
Amide → (RCONR'R") → ( name end in 'AMIDE' )
In an aldehyde, atleast one hydrogen atom must be attached to the carbonyl carbon. For an aldehyde, remove ( -e) from alkane name and add ( -al) at the end of the compound.
Methanal is the IUPAC name for Formaldehyde.
Answer:
The four characrteristics of warm blooded animals are÷
Explanation:
i=They can keep its body temperature the same no matter what the outside temperature .
ii=They can maintain a constant body temperature.
iii=They obtain energy from food consumption.
iv=They maintain their body temperature higher than environment.
Answer:
A.) 4.0
Explanation:
The general equilibrium expression looks like this:
![K = \frac{[C]^{c} [D]^{d} }{[A]^{a} [B]^{b} }](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%5BB%5D%5E%7Bb%7D%20%7D)
In this expression,
-----> K = equilibrium constant
-----> uppercase letters = molarity
-----> lowercase letters = balanced equation coefficients
In this case, the molarity's do not need to be raised to any numbers because the coefficients in the balanced equation are all 1. You can find the constant by plugging the given molarities into the equation and simplifying.
<----- Equilibrium expression
<----- Insert molarities
<----- Multiply
<----- Divide
An an increase in
temperature lead to more effective collisions between reactant particles and an
increase in the rate of a chemical reaction because the number of
molecules with sufficient energy to react increases. The answer is number 3.