Answer:
The answers would be 5.42 and 5.1.
Step-by-step explanation:
The diagram shows 5.39, so those answers would be more than the diagram shows.
This problem is a combination of the Poisson distribution and binomial distribution.
First, we need to find the probability of a single student sending less than 6 messages in a day, i.e.
P(X<6)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)
=0.006738+0.033690+0.084224+0.140374+0.175467+0.175467
= 0.615961
For ALL 20 students to send less than 6 messages, the probability is
P=C(20,20)*0.615961^20*(1-0.615961)^0
=6.18101*10^(-5) or approximately
=0.00006181
The <em>trigonometric</em> function that represents the curve seen in the picture is f(x) = 4.5 · sin (π · x / 2 - π) - 6.5.
<h3>How to derive a sinusoidal expression</h3>
In this problem we need to find a <em>sinusoidal</em> expression that models the curve seen in the picture. The most typical <em>sinusoidal</em> model is described below:
f(x) = a · sin (b · x + c) + d (1)
Where:
- a - Amplitude
- b - Angular frequency
- c - Angular phase
- d - Vertical midpoint
Now we proceed to find the value of each variable:
Amplitude
a = - 2 - (-6.5)
a = 4.5
Angular frequency
b = 2π / T, where T is the period.
0.25 · T = 4 - 3
T = 4
b = 2π / 4
b = π / 2
Midpoint
d = - 6.5
Angular phase
- 2 = 4.5 · sin (π · 4/2 + c) - 6.5
4.5 = 4.5 · sin (π · 4/2 + c)
1 = sin (2π + c)
π = 2π + c
c = - π
The <em>trigonometric</em> function that represents the curve seen in the picture is f(x) = 4.5 · sin (π · x / 2 - π) - 6.5.
To learn more on trigonometric functions: brainly.com/question/15706158
#SPJ1
12/30 is simplified to 2/5 and<span>number of students trying out the same for both boys and girls</span> 16/40 is also simplified to 2/5 so YES the number of students trying out is the same for both boys and girls. I hope this helps :)
Answer:
An irrational number is a number that cannot be written as a fraction. It is a non-repeating, non-terminating decimal. Approximate square root of numbers that are not perfect squares and put them on the number line.