1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
3 years ago
11

How do I find 1/4 of 52

Mathematics
1 answer:
Neporo4naja [7]3 years ago
5 0

Answer:

13

Step-by-step explanation:

1/4 of 52 is actually telling us to multiply 1/4 by 52 over 1.

1/4×52/1

=13

You might be interested in
Fitness Your goal is to take at least 10,000 steps per day. According to your pedometer, you have walked 527 4 steps. Write and
Archy [21]

The inequality is x + 5274 ≥ 10,000.

The total number of steps I have to take to reach my goal is 4726.

<h3>How many more steps do I have to take?</h3>

Here are inequality signs and what they mean:

  • > means greater than
  • < means less than
  • ≥ means greater than or equal to
  • ≤ less than or equal to

Number of steps I have to take + number of steps I have taken ≥Total steps

X + 5274 + x ≥ 10,000

x ≥ 10,000 - 5274

x ≥ 4726

To learn more about inequality, please check: brainly.com/question/5031619

#SPJ1

5 0
1 year ago
Help please? :))))))))))))
Ivan
A. 4times y+2        b. 5-x times 3 times y  c. -2 times y-3  d. -7 times 4+x            e. 16 times x -8 divided by 4     f. 1 divided by 3 times 2 times x +3


sorry I tried to make it out the best that I could I don't have all the symbols so I just wrote out the divide and multiply parts 
5 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
All I need is the equation plz and thank you​
Vanyuwa [196]

Answer:

Number of photos = 3 * minutes

Step-by-step explanation:

7 0
3 years ago
For f (x) = 4 x +1 and g(x) = x^2- 5, find (g/f)(x)
Lady bird [3.3K]

Answer:

The answer is: \frac{x^2-5}{4x+1}

Step-by-step explanation:

We are given: f(x)=4x+1 and g(x) = x^2-5

We need to find (g/f)(x).

Simply divide g(x) and f(x)\\.

Which equates to:

(g/f)(x)= \frac{g(x)}{f(x)} =\frac{x^2-5}{4x+1}

This cannot be simplified further, so it is the answer.

3 0
3 years ago
Other questions:
  • The radius of a semicircle is 3 centimeters. What is the semicircle's diameter?​
    7·2 answers
  • The price of an item has been reduced by 30%. The original price was $30. What is the price of the item now ?
    7·1 answer
  • PLEASE EXPLAIN...WILL MARK BRAINLIEST FOR BEST ANSWER
    14·1 answer
  • OK this id just for fun but how many holes are in A Polo
    11·2 answers
  • 7. All of the following are perfect square trinomials EXCEPT one. Which is it?
    7·1 answer
  • 35. Explain the difference between the reciprocal of x^2
    15·1 answer
  • Which expression is undefined?
    10·2 answers
  • Ellle bought 6 pineapples for $12.95. Estlm<br> the cost of each pineapple to the nearest cent?
    15·1 answer
  • PLEASE HELP!! Need by 3/29/22!<br> Find the area of these shapes
    11·1 answer
  • 15x - 10= 65<br> 15x =<br> X=
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!