Step-by-step explanation:
The Taylor series expansion is:
Tₙ(x) = ∑ f⁽ⁿ⁾(a) (x − a)ⁿ / n!
f(x) = 1/x, a = 4, and n = 3.
First, find the derivatives.
f⁽⁰⁾(4) = 1/4
f⁽¹⁾(4) = -1/(4)² = -1/16
f⁽²⁾(4) = 2/(4)³ = 1/32
f⁽³⁾(4) = -6/(4)⁴ = -3/128
Therefore:
T₃(x) = 1/4 (x − 4)⁰ / 0! − 1/16 (x − 4)¹ / 1! + 1/32 (x − 4)² / 2! − 3/128 (x − 4)³ / 3!
T₃(x) = 1/4 − 1/16 (x − 4) + 1/64 (x − 4)² − 1/256 (x − 4)³
f(x) = 1/x has a vertical asymptote at x=0 and a horizontal asymptote at y=0. So we can eliminate the top left option. That leaves the other three options, where f(x) is the blue line.
Now we have to determine which green line is T₃(x). The simplest way is to notice that f(x) and T₃(x) intersect at x=4 (which makes sense, since T₃(x) is the Taylor series centered at x=4).
The bottom right graph is the only correct option.
Jennie I Hugo beefy chicken
Administration officials say the government has no plans for a new plan for a new president in a long way for the national security to meet the national government for a new plan to stop the government and government officials in a new plan for the president president in a new plan for the president of the country for a new plan for the president of national president in a new national government in a new plan to halt national security and plan for the national security plan to protest against the president and national president of president hun president and national security adviser to the new plan