Answer:
<h3>For two events A and B show that P (A∩B) ≥ P (A)+P (B)−1.</h3>
By De morgan's law

which is Bonferroni’s inequality
<h3>Result 1: P (Ac) = 1 − P(A)</h3>
Proof
If S is universal set then

<h3>Result 2 : For any two events A and B, P (A∪B) = P (A)+P (B)−P (A∩B) and P(A) ≥ P(B)</h3>
Proof:
If S is a universal set then:

Which show A∪B can be expressed as union of two disjoint sets.
If A and (B∩Ac) are two disjoint sets then
B can be expressed as:

If B is intersection of two disjoint sets then

Then (1) becomes

<h3>Result 3: For any two events A and B, P(A) = P(A ∩ B) + P (A ∩ Bc)</h3>
Proof:
If A and B are two disjoint sets then

<h3>Result 4: If B ⊂ A, then A∩B = B. Therefore P (A)−P (B) = P (A ∩ Bc) </h3>
Proof:
If B is subset of A then all elements of B lie in A so A ∩ B =B
where A and A ∩ Bc are disjoint.

From axiom P(E)≥0

Therefore,
P(A)≥P(B)
Answer:
it is 2/3
Step-by-step explanation
i can't explain it to you
Answer:
its the last one hun
Step-by-step explanation:
Step One
Calculate the number of feet traveled in 1 rotation.
Formula
C = π*d
P = 3.14
d = 9 inches = 9/12 feet = 3/4 of a foot.
C = 3.14 * 3/4 = 2.355 So that means that every time the tire turns around 1 complete turn, the distance traveled on the ground is 2.355 feet.
Step Two
Figure out the number of revolutions.
1 revolution = 2.355 feet
x revolutions = 300 feet.
1/x = 2.355/ 300 Cross multiply
2.355 feet * x = 1 rev * 300 feet
2.355 x = 300 rev Divide by 2.355
x = 300 / 2.355
x = 127.39 revolutions. <<<< Answer
Answer:
0.2364
Step-by-step explanation:
We will take
Lyme = L
HGE = H
P(L) = 16% = 0.16
P(H) = 10% = 0.10
P(L ∩ H) = 0.10 x p(L U H)
Using the addition theorem
P(L U H) = p(L) + P(H) - P(L ∩ H)
P(L U H) = 0.16 + 0.10 - 0.10 * p(L u H)
P(L U H) = 0.26 - 0.10p(L u H)
We collect like terms
P(L U H) + 0.10P(L U H) = 0.26
This can be rewritten as:
P(L U H)[1 +0.1] = 0.26
Then we have,
1.1p(L U H) = 0.26
We divide through by 1.1
P(L U H) = 0.26/1.1
= 0.2364
Therefore
P(L ∩ H) = 0.10 x 0.2364
The probability of tick also carrying lyme disease
P(L|H) = p(L ∩ H)/P(H)
= 0.1x0.2364/0.1
= 0.2364