Answer:
Natural numbers (integers greater than zero)
X = 3, 5, 4, 4, 3
Step-by-step explanation:
The least number of cars that can be observed in this experiment is 1, if the first car turns left. On the other hand, the experiment could go on forever if no car ever turns left, thus the highest number of cars approaches infinite.
The possible values of X are integers greater than zero, which are known as the Natural numbers.
If X = number of cars observed, simply count the number of letters in each outcome for the value of X:
Outcome = RRL, AARRL, AARL, RRAL, ARL
X = 3, 5, 4, 4, 3
Answer:
74
Step-by-step explanation:
60,000 + 14,000
ANS 14%
ANSWER: 74
Hint: the sum of the angles is equal to 180 in a triangle. could you make an equation to use that?
3x+13, 7x+2, and 75 are the three angle values. They will sum up to 180.
Steps:
We set the equation to:
3x+13+7x+2+75=180
We can combine some terms
10x+90=180
Then, we isolate x
10x=90
And we divide by 10
x=9
Great! but we are not done yet. We want the measure of angle A, so we need to plug x back into the equation for angle a
3(9)+13
Multiply
27+13
Add
40
Answer:
a solution is 1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Step-by-step explanation:
for the equation
(1 + x⁴) dy + x*(1 + 4y²) dx = 0
(1 + x⁴) dy = - x*(1 + 4y²) dx
[1/(1 + 4y²)] dy = [-x/(1 + x⁴)] dx
∫[1/(1 + 4y²)] dy = ∫[-x/(1 + x⁴)] dx
now to solve each integral
I₁= ∫[1/(1 + 4y²)] dy = 1/2 *tan⁻¹ (2*y) + C₁
I₂= ∫[-x/(1 + x⁴)] dx
for u= x² → du=x*dx
I₂= ∫[-x/(1 + x⁴)] dx = -∫[1/(1 + u² )] du = - tan⁻¹ (u) +C₂ = - tan⁻¹ (x²) +C₂
then
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) +C
for y(x=1) = 0
1/2 *tan⁻¹ (2*0) = - tan⁻¹ (1²) +C
since tan⁻¹ (1²) for π/4+ π*N and tan⁻¹ (0) for π*N , we will choose for simplicity N=0 . hen an explicit solution would be
1/2 * 0 = - π/4 + C
C= π/4
therefore
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4