1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semenov [28]
3 years ago
7

1. What are two other ways you could rewrite 50%?​

Mathematics
1 answer:
NNADVOKAT [17]3 years ago
8 0
0.5 is the first way

1/2 is the second way

50% is the third way.

Hope that helps bud :).
You might be interested in
PLZ ANSWER FAST!!!!
lana66690 [7]
0.7154 is the product for 0.98×0.73
5 0
4 years ago
Jeans ($48) Sweater ($42) Tennis Shoes ($69) T-Shirt ($21) Blouse ($52) Heather is shopping for back-to-school clothes. The item
IgorC [24]
You can use rounding to figure this problem out. If the number in the ones place is 0 to 4, round down to the nearest tens place; if the number in the ones place in 5 to 9, round up to the nearest tens place.

48 rounds to 50.
42 rounds to 40.
69 rounds to 70.
21 rounds to 20.
52 rounds to 50.

Now use mental math to estimate the cost (50 + 40 + 70 + 20 + 50). Heather will spend about $230.

Answer:
D) $230
8 0
3 years ago
Read 2 more answers
There was a bag of counters. 45 were large! For every large counters 3/5 were small! The green was 300% than yellow, there were
madreJ [45]

Answer:

12 is the correct answer

7 0
2 years ago
Which one is correct ?
Kobotan [32]
A C F are the answers
8 0
3 years ago
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
Other questions:
  • Consider the parabola given by the equation: f(x) = 4x² - 6x - 8 Find the following for this parabola: A) The vertex: Preview B)
    9·1 answer
  • PLEASE HELP!
    5·2 answers
  • A lighting designer is finalizing the lighting plan
    8·1 answer
  • 110 decreased by 70%
    12·1 answer
  • What is the measure of Angle<br> 1 and Angle 2?
    14·1 answer
  • When Ximena commutes to work, the amount of time it takes her to arrive is normally distributed with a mean of 38 minutes and a
    15·1 answer
  • What is the purpose of rereading a text? Check all that apply.
    6·2 answers
  • If 2x^2 - 5x + 7 is subtracted from 4x^2 + 2x - 11, what is the coefficient of x in the result
    12·2 answers
  • Help would be much appreciated ​
    9·1 answer
  • Please help math is hard!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!