C
0.70
I hope this is help, I’m so so sorry if I’m incorrect
Answer:
Percentage error = 1.88 %
Solution:
Data Given:
Mass of Sample = 20.46 g
Volume of Sample = 43.0 mL - 40.0 mL = 3.0 mL
Formula Used:
Density = Mass / Volume
Putting values,
Density = 20.46 g / 3.0 mL
Density = 6.82 g.mL⁻¹
Percentage Error:
Experimental Value = 6.82 g.mL⁻¹
Accepted Value = 6.95 g.mL⁻¹
= 6.82 g.mL⁻¹ / 6.95 g.mL⁻¹ × 100 = 98.12 %
Percentage Error = 100 % - 98.12 %
Percentage error = 1.88 %
Answer:
Explanation:
It can be determined by measuring the Ph. D is incorrect.
C: is wrong because if you are making something acidic, you are increasing the H+
B: is the correct answer.
A: pH decreases. H+ increases which makes the Ph decrease. It is an oddity of the formula that makes this happen.
Answer:
When ΔS > ΔH/ T, then the reaction will proceed forward
Explanation:
- The entity that determines the whether a reaction will occur on its own in the forward direction (Spontaneity or Feasibility) is Gibb's free energy.
- Gibb's free energy is the energy available to do work. It is denoted as 'G'. It cannot be easily measured. The change (ΔG) can only be measured. ΔG = ΔH - TΔS
when ΔG is positive, The reaction is not spontaneous (reaction will not occur on its own)
When ΔG is negative, The reaction is spontaneous (reaction will occur on its own)
When ΔG is zero, the reaction is in equilibrium
Option A and E are not correct. ΔH (Enthalpy) cannot determine spontaneity
Option C and D cannot alone determine spontaneity of reaction
For reaction to be spontaneous, TΔS > ΔH
Therefore, ΔS > ΔH/T