The most common reaction that causes spoilage isn't a reaction at all. Molds and Bacteria are attracted to the easily found presence of water in the fruit. They find a natural place to reproduce and what they do causes spoilage.
Very few sources talk about the chemical changes that take place. If you put fruit in a refrigerator it slows the spoiling process down. That means that the chemical reaction has to be endothermic (it requires heat to occur)
The process of spoilage is speeded up by bananas for example, giving up Ethylene gas. You do not want to put a banana with tomatoes, because tomatoes are very sensitive to Ethylene. (It's OK to eat them together. They make a terrific salad. Yum).
I cannot find a definitive source that connects all this together, but the conduct of the fruit in refrigerators confirms what I am saying.
Spoilage is a very complex reaction and interaction with the environment. I have given you a hint of what happens but you should search it out to convince yourself of the outcome.
For a hurricane to form, the sea temperature must be at least 26.7. The temperature of the water in the problem is 27.5.
Another condition is that there should be little wind in the area. The problem states that there is a very light breeze. Finally, the humidity must be high.
Therefore, it is expected that a hurricane will form at the given location.
Answer:
8.7 L
Explanation:
T2(V1/T1) = V2
417.15 K(6.2 L/296.45 K) = 8.7 L
Remember to almost always change celcius to kelvin. Also, this is part of Charle's Law (temp and volume are proportional, so if temp increaces so must the volume or vice versa). Lastly, Charle's Law has the formula of V1/T1 = V2/T2. I just rearranged it to go along with your problem. Hence, the T2(V1/T1) = V2
Because when the orange frog eats the red fly the dye that make the fly red turns the frog red very slowly
Amount Remaining Years #half lives
100g 0 0
50 g 100 1
25g 200 2