The molecule BH3 is trigonal planar, with B in the center and H in the three vertices. Ther are no free electrons. All the valence electrons are paired in and forming bonds.
There are four kind of intermolecular attractions: ionic, hydrogen bonds, polar and dispersion forces.
B and H have very similar electronegativities, Boron's electronegativity is 2.0 and Hydrogen's electronegativity is 2.0.
The basis of ionic compounds are ions and the basis of polar compounds are dipoles.
The very similar electronegativities means that B and H will not form either ions or dipoles. So, that discards the possibility of finding ionic or polar interactions.
Regarding, hydrogen bonds, that only happens when hydrogen bonds to O, N or F atoms. This is not the case, so you are sure that there are not hydrogen bonds.
When this is the case, the only intermolecular force is dispersion interaction, which present in all molecules.
Then, the answer is dispersion interaction.
Explanation:
1. Democritus proposes the existence of atoms
2. Dalton's atomic theory
3. J. J. Thomson discovers the electron
4. Rutherford's gold foil experiment
5. Bohr model
6. Schrödinger's Wave Mechanics model of the atom
The first idea about matter containing atoms dates back to Greek philosophers. One of them was Democritus .
In 1808 Dalton put forward his atomic theory
In 1897 J.J Thomson discovered cathode rays using his gas discharge tube experiment.
In 1911, Ernest Rutherford proposed the nuclear model of the atom using experiments on the gold foil.
Neils Bohr in 1913 suggested his own atomic model
Erwin Schrodinger formulated the wave equation of electrons
Learn more;
Dalton atomic theory brainly.com/question/1979129
Rutherford gold foil experiment brainly.com/question/1859083
#learnwithBrainly
It is 1-3-1-3
so 1Al2O3 + 3H2So4 ---> 1Al2(So4)3 + 3H2O
Hey it isnt letting me submit my answer to your question on the Japanese chart, so imma just submit it here
Answer:
1 mole of platinum
Explanation:
To obtain the number of mole(s) of platinum present, we need to determine the empirical formula for the compound.
The empirical formula for the compound can be obtained as follow:
Platinum (Pt) = 117.4 g
Carbon (C) = 28.91 g
Nitrogen (N) = 33.71 g
Divide by their molar mass
Pt = 117.4 / 195 = 0.602
C = 28.91 / 12 = 2.409
N = 33.71 / 14 = 2.408
Divide by the smallest
Pt = 0.602 / 0.602 = 1
C = 2.409 / 0.602 = 4
N = 2.408 / 0.602 = 4
The empirical formula for the compound is PtC₄N₄ => Pt(CN)₄
From the formula of the compound (i.e Pt(CN)₄), we can see clearly that the compound contains 1 mole of platinum.