Cumulus and cumulonimbus<span />
Given:
Uniform distributed load with an intensity of W = 50 kN / m on an overhang beam.
We need to determine the maximum shear stress developed in the beam:
τ = F/A
Assuming the area of the beam is 100 m^2 with a length of 10 m.
τ = F/A
τ = W/l
τ = 50kN/m / 10 m
τ = 5kN/m^2
τ = 5000 N/ m^2<span />
Answer:
The coefficient of performance for the cycle is 2.33.
Explanation:
Given that,
Output energy 
Work done 
We need to calculate the coefficient of performance
Using formula of the coefficient of performance

We need to calculate the 

Put the value into the formula



Now put the value of
into the formula of COP


Hence, The coefficient of performance for the cycle is 2.33.
Answer:
Explanation:
The change is as follows
P₁ V₁ to 3P₁, V₁ ( constt volume ) --- first process
3P₁,V₁ to 3P₁ , 5V₁ ( constt pressure ) ---- second process
In the first process Temperature must have been increased 3 times . So if initial temperature is T₁ then final temperature will be 3 T₁
P₁V₁ = n R T₁ , n is no of moles of gas enclosed.
nRT₁ = P₁V₁
Heat added at constant volume = n Cv ( 3T₁ - T₁)
= n x 5/3 R X 2T₁ ( for diatomic gas Cv = 5/3 R)
= 10/3 x nRT₁
= 10/3x P₁V₁
In the second process, Temperature must have been increased 5 times . So if initial temperature is 3T₁ then final temperature will be 15 T₁
Heat added at constant pressure in second case
= n Cp ( 15T₁ - 3T₁)
= n x 7/3 R X 12T₁ ( For diatomic gas Cp = 7/3 R)
= 28 x nRT₁
= 28 P₁V₁