Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
Answer:
B is the answer a force is a push or pull
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
Answer:
800 mL
Explanation:
D*V=M
You pick out the numbers as well as what it is they represent from the word problem/explanation, then from there plug them in to the equations. Once you do that, you get your product and have the answer.
10*80= 800
Answer:
a) b = -5
b) slope = 3/2
Explanation:
a) The equation of a line is given as y = mx + b, where m is the slope of the line and b is the intercept on the y axis.
Given that y = 3x + b and it passes through the point (2, 1). Hence when x = 2, y = 1. Therefore, substituting for x and y:
1 = 3(2) + b
1 = 6 + b
b = 1 - 6
b = -5
b) The equation of a line passing through two points (
) and
is given by:

The equation of the line passing through the two points (0,3) and (4,9) is:

Comparing y = (3/2)x + 3 with y = mx + b, the slope (m) is 3/2