The study strategy Lauren is using in spreading her study sessions over a period of time is pacing, which helps the student develop a schedule focused on their own study pace.
<h3>Pacing Study Sessions</h3>
This study strategy of distributing the study into short sessions rather than studying the entire content through one long session is more effective in retaining content and learning.
What happens is that Lauren is using mass repetition processing, which can be compared to a longitudinal wave in physics, with spaces in between, concentrating the initial review close to the proof to ensure retention and avoid forgetting.
Through pacing, Lauren achieves greater motivation to carry out her studies in a concentrated and focused way, helping her to retain and preserve knowledge.
The correct answer is:
Find out more information about pacing here:
brainly.com/question/988371
Answer:
3 moles of O2 needed
Explanation:
2 moles of Mg to one mole O2
so 3 moles of O2 needed
Answer:
Copper>Steel>Aluminium
Explanation:
Hello,
Since the heat capacity accounts for the required heat to increase by 1°C, 1 kg of the metal, copper is the one that has the lower heat capacity, it means that it requires the least amount of energy to warm up (increase its temperature), this could be substantiated via the mathematical definition of heat capacity:

Solving for
:

It means that the lower the heat capacity, the higher the final temperature.
Best regards.
The most likely bond between element X and Iodine would be an ionic, or electrovalent, bond. Iodine has seven electrons in its outer shell, also known as the valence shell. To become perfectly stable, it needs only a single electron from another element. Hence no sharing of electron takes place (usually), which is the condition required for it to be covalent bonding. Hence it's most likely an ionic bonding/
Answer:
0.665 moles of CO₂
Explanation:
The balance chemical equation for the combustion of Ethane is as follow:
2 C₂H₆ + 7 O₂ → 4 CO₂ + 6 H₂O
Step 1: <u>Calculate moles of C₂H₆ as;</u>
Moles = Mass / M.Mass
Putting values,
Moles = 10.0 g / 30.07 g/mol
Moles = 0.3325 moles
Step 2: <u>Calculate Moles of CO₂ as;</u>
According to balance chemical equation,
2 moles of C₂H₆ produced = 4 moles of CO₂
So,
0.3325 moles of C₂H₆ will produce = X moles of CO₂
Solving for X,
X = 0.3325 mol × 4 mol ÷ 2 mol
X = 0.665 moles of CO₂