Answer:
m = -3 and b = 5
Step-by-step explanation:
y = -3x + 5
.......
I: 12x-5y=0
II:(x+12)^2+(y-5)^2=169
with I:
12x=5y
x=(5/12)y
-> substitute x in II:
((5/12)y+12)^2+(y-5)^2=169
(25/144)y^2+10y+144+y^2-10y+25=169
(25/144)y^2+y^2+10y-10y+144+25=169
(25/144)y^2+y^2+144+25=169
(25/144)y^2+y^2+169=169
(25/144)y^2+y^2=0
y^2=0
y=0
insert into I:
12x=0
x=0
-> only intersection is at (0,0) = option B
Answer:
2.55
Step-by-step explanation:
Answer:
l think the answer is B
Step-by-step explanation:
The eighth patern should give the result 81
Answer:
x=7 y=3
Step-by-step explanation:
-x+6y=11
2x-3y=5
-2x+12y=22
2x-3y=5
Add both equations
-2x+2x-3y+12=22+5
9y=27
y=3
plug y back in
-x+18=11
-x=-7
x=7