Since you provide no options, Henry Moseley measured a property linked to Periodic Table position. After his revisions to the periodic table, Atomic number became more meaningful and the three pair of elements that seemed to be in the wrong order could be explained
Hey there!
Na + H₂O → NaOH + H₂
First, balance O.
One on the left, one on the right. Already balanced.
Next, balance H.
Two on the left, three on the right. Let's add a coefficient of 2 in front of NaOH and a coefficient of 2 in front of H₂O, so we have 4 on each side.
Na + 2H₂O → 2NaOH + H₂
Lastly, balance Na.
One on the left, two on the right. Add a coefficient of 2 in front of Na.
2Na + 2H₂O → 2NaOH + H₂
This is our final balanced equation.
Hope this helps!
Answer:
hi
Explanation:
The mass of the actual tin will remain constant; however I assume you are comparing the mass of the reactant, tin, with the mass of the products. The increase in mass stems from the oxides of tin present due to its reaction with oxygen in the air:
Sn(s) + O2(g) → SnO2(s)
By working out the atomic mass of the tin and the relative formula mass of tin oxide, you can see why there is a mass increase; 119:151. As you can see here, for every 119g of tin reacted, there will be 151g of tin oxide, hence why you think the mass of the tin increased (by 32g).
Hope this helped!
Co2 and Fe are the products the other two are reactants.
Answer: When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases. The motion and spacing of the particles determines the state of matter of the substance. The end result of increased molecular motion is that the object expands and takes up more space.
Explanation: Hope this helps!