Answer:

Explanation:
Hello!
In this case, since a dilution process implies that the moles of the solute remain the same before and after the addition of diluting water, we can write:

Thus, since we know the volume and concentration of the initial sample, we compute the resulting concentration as shown below:

Best regards!
Answer:
Each energy sublevel contains a different number of electrons. For example, sublevel D can contain up to 10 electrons
Explanation:
The atoms are surrounded by propellers that within each propeller there is a certain number of electrons, these electrons jump from orbit to orbit according to the amount of energy they have. The four levels that make up the electronic cloud that surrounds an atom are: s p d f.
When these electrons change orbit or level they release energy in the form of light, which is known as a photon.
Answer:
V = 2.32 Liters
Explanation:
PV = nRT => V = nRT/P
n = 25.8g/122g/mole = 0.21 mole
R = 0.08206 L·atm/mol·K
T = 25.44°C + 273 = 298.44K
P = 2.22 atm (given in problem)
V = (0.21mol)(0.08206 L·atm/mol·K)(298.44K)/(2.22atm) = 2.32 Liters at 25.44°C & 2.22atm
Balance each one by adding electrons to make the charges on both sides the same:
Sn--> Sn2+ + 2 e-
Ag+ + 1 e- --> Ag
Now, you have to have the same number of electrons in the two half-reactions, so multiply the second one by 2 to get:
2 Ag+ + 2 e- --> 2 Ag
Now, just add the two half reactions together, cancelling anything that's the same on both sides:
2 Ag+ + Sn --> Sn2+ + 2 Ag
And you're done.