Use the ideal gas law:
PV = nRT
so, T = PV / nR
n=0.5
V= 120 dm^3 = 120 L (1 dm^3 = 1 L)
R = 1/12
P = 15,000 Pa = 0.147 atm (1 pa = 9.86 10^{-6} )
Put the values:
T = PV / nR
T = (0.147) (120) / (0.5) (1/12)
T= 426 K
Answer:
1.59 atm
Explanation:
The reaction is:

The dalton's law tell us that the total pressure of a mixture of gases is the sum of the partial pressure of every gas.
So after the reaction the total pressure is:

we don't include
because it decomposed completely.
Assuming ideal gases
PV=nRT
P= pressure, V= volume of the container, n= mol of gas, R=constant of gases and T=temperature.
so moles of
is:

from the reaction stoichiometry (1:1) we have that after the reaction the number of moles of each product is the same number of moles of
.


The partial pressure of each gas is:


so total pressure is:

replacing the moles we get:

We know that T2=3*T1
replacing this value in the equation we get:


Answer:
The shaded area 2 is likely to have subatomic particle that are constantly in motion. I took the test and I got it right