Answer:
What she can do to collect the data is;
B. Gather a few oranges and see how many seeds are in each
Explanation:
The quantity Katie wants to find out is the number of seeds contained in each orange
Therefore, the required population = The number of seeds in a given orange
The method of estimation of the number of seeds per orange is sampling method, whereby the number of seeds in each of the orange in the sample is used to as an hypothesis as to the number of seeds expected in each orange of the entire population.
Therefore, in order to collect the data, she can gather a few oranges and see how many seeds are in each.
Wave speed = frequency * wavelength
Rearrange so it's equal to wavelength. Do this by diving both sides by frequency to leave you with:
Wave speed / frequency = wavelength
340 / 265 = 1.2830 m
Answer:
The room with the lower temperature
Explanation:
Using
PV=nRT
Since both the rooms same volume and are connected, so they will have same pressure
PV=nRT=constant
nT=Constant/R=constant
If T is more n has to be less
Thus, lower the temperature, more the number molecules.
<span>Es para la comodidad del cliente. <span>Si el satélite no estaba parado
en el cielo, entonces el cliente tendría que seguir moviendo su plato
para seguir el satélite.</span></span>
Answer:
0.14
Explanation:
Flow rate is the volume flowing through a point at a particular time, in calcuing flow rate we have
Q= v*t
it in terms of Area, we have Q= A*v
Where A= area
v= velocity.
Solving the question , flow rate is constant then
A*v= constant
A(i) v(i)= A(f) v(f)
Where A(i)= initial area= 1.00cm^2
A(f)= final area= 0.400cm^2
V(i) and V(f) are the initial and final velocity respectively and the ratio of the two will gives us the factor
Substitute the values into the equation we have
1 V(i)= 4 V(f)
But we were told that the cross sectional area of 1.00cm^2 branches into 18 smaller arteries.
Then
1 V(i)=0.4 V(f)*(18)
1 V(i)=7.2V(f)
Then if we find the ratio of the velocity, we will get the factor.
V(f)/V(i)= 1/7.2
V(f)/V(i)=0.14
Hence, the factor of the average velocity of the blood reduced when it passes into these branches is 0.14