Answer:
It is called a surface wave (rayleigh wave) that transmits its energy with the wind blowing onto its surface.Hope this helps
When you are talking about the Principle of mechanical Energy Conservation, it is really only including the kinetic and potential energy in a total system. When frictional forces are present, although the conservation of energy law is still present, it does not work when it comes to the conservation of mechanical energy as there is another type of energy that is factored in. As friction acts on the object, that transition from potential to kinetic as it slide/falls will be completely different as some of that energy is being transformed into thermal energy. Which breaks the conservation of mechanical energy.
Answer:
The answer is C.
Explanation:
An ion is unlike a neutral atom in the fact that it has a charge. Because electrons are negatively charged, an atom becomes more positive if electrons are lost.
Answer:
Ng = 0.893 N, Ne = 0.107N
Explanation:
Number of particles in Ground state = Ng
Number of particles in Excited state = Ne
Ne/Ng = e^{(-ΔE)/kt}
Since excited state is 3 fold degenerate
Ne/Ng =3 x e^{(-ΔE)/kt}
ΔE = Energy difference between ground and excited states = 0.25eV
T = 960 K
Constant k = 8.617 x 10^-5 eV/K
Ne/Ng = 3 x e^{-0.25/(8.617x10^-5) x 960}
= 3 x e^(-3.188645)
= 3 x 0.0412 = 0.1237 ≅ 0.12
Ne = 0.12 Ng
but Ne + Ng = N, where is N is total number of particles, substituting Ne into equation we get,
Ng(1 + 0.12) = N
Ng = N/1.12 = 0.893N
and Ne = 0.12 x 0.893 N = 0.107 N
Answer:
the answer is the explaination
Explanation:
Present beach erosion prevention methods include sand dunes, vegetation, seawalls, sandbags, and sand fences. Based on the research conducted, it is evident that new ways to prevent erosion must be obtained. Each way that is currently used has extensive negative effects on beaches and their natural tendencies.