The equation in this problem is: 2Pb(NO3)2(s) --> 2PbO(s)
+ 4NO2(g) + O2(g)
And the question is what the pressure in the cylinder is
after decomposition and cooling to a temperature of 300 K.
Solution:
Moles of Pb (NO3)2 = 3.31/331 = 0.0100
2 moles of Pb (NO3)2 will decay to mold 4 moles of NO2 and 1 mole of O2. So
0.0100 moles of Pb (NO3)2 will form 0.02 moles of NO2 and 0.00500 moles of
O2
Then use the formula: PV = nRT.
P = (0.02 + 0.005) * 0.082 * 300 / 1.62
= 0.380 atm
<span> </span>
Answer:
Prueba con tus argumentos quienes sufren mas con la violencia?
Answer:
C
Explanation:
It said in water it had a freezing point of 0.352oC. so right i the start i picked C because it sounds like it doesn't dissociates in water so that is my answer
- Hope this helps
- This is my answer
- Ask any questions if wrong plz and thank you
2 is your answer hope you get it right
In No3-1 the oxidation number of oxygen is -5 so oxidation number of N would be +5