Answer:
B. 0.92 M
Explanation:
Molarity of a solution = number of moles (n) ÷ volume (V)
According to the information provided in this question;
mass of NaCl = 42g
Volume of water = 780mL
Using mole = mass/molar mass
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
mole = 42/58.5
mole (n) = 0.72mol
Volume (V) = 780 mL = 780/1000 = 0.780 L
Hence, molarity = n/V
Molarity = 0.72/0.780
Molarity = 0.923 M
Answer:
14. 13.2cg = 1.32dg
15. 3.8m = 0.0038km
16. 24.8L = 24800mL
17. 0.87kL = 870L
18. 26.01cm = 0.0002601km
19. 0.001hm = 10cm
Explanation:
14. 13.2/10 = 1.32
15. 38/1000 = 0.0038
16. 24.8(1000) = 24,800
17. 0.87(1000) = 870
18. 26.01/100000 = 0.0002601
19. 0.001hm(10000) = 10
An easy way to do these by yourself is to familiarize yourself with what each prefix means. Once you do this, you can multiply the value of the prefix when converting from a smaller unit of measurement to a larger one and divide the value of the prefix when converting from a large unit of measurement to a smaller one.
Tomato Suop Creamchsee almonds and pears
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26