1,6,1,2 that should be the answer
43 degrees
angle of reflection is equal to the angle of incidence
The <span> the Brønsted-Lowry acid donates H⁻.
In this reaction Particle that loose H⁺ is A. NH4⁺ ion.</span>
The answer is (2) CO and NH3. The chemical reaction can only break down chemical bonds between atoms inside the molecule. The He and Xe is consists of one atom only, so they can not be broken down by chemical means.
We are given the complete reaction:
<span>3 H2(g) + N2(g) → 2 NH3(g)</span>
First let us convert mass to moles.
moles H2 = 5.22 kg / (2 kg/kmol) = 2.61 kmol H2
moles N2 = 31.5 kg / (28 kg/kmol) = 1.125 kmol N2
Then we find for the limiting reactant. The limiting
reactant is the one who has lower (moles/coefficient) ratio.
H2 = 2.61 / 3 = 0.87
N2 = 1.125 / 1 = 1.125
Hence the H2 is the limiting reactant so we should base
the calculation of NH3 from it. We see that 2 moles of NH3 is produced for
every 3 moles of H2, therefore:
moles NH3 = 2.61 kmol H2 * (2 kmol NH3 / 3 kmol H2) = 1.74
kmol
The molar mass of NH3 is 17 kg/kmol, therefore the mass
NH3 is:
mass NH3 = 1.74 kmol * 17 kg/kmol
<span>mass NH3 = 29.58 kg</span>